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Abstract: Digital pathology has shown great importance for diagnostic purposes in the digital
age by integrating basic image features into multi-modality information. We quantify the degree
of correlation between the multiple texture features from H&E images and polarization parameter
sets derived from Mueller matrix images of the same sample to provide more microstructural
information for assisting diagnosis. The experimental result shows the correlations between
texture feature and polarization parameter via Pearson coefficients. Polarization parameters t1,
DL and the depolarization parameter ∆ correlated with image texture features Tamura_Fcon
and Tamura_Frgh, and can be used as powerful tools to quantitatively characterize cell nuclei
related with tumor progression in breast pathological tissues. Polarization parameters δ and rL
associated with the image texture feature Tamura_Flin have great potential for the quantitative
characterization of proliferative fibers produced by inflammation. Furthermore, polarization
parameters have the advantages of stable recognition in low resolution images. This work
validates the associations between image texture features and polarization parameters and the
merit of polarization imaging methods in low-resolution situations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Digital pathology is the endorsement for pathologists in the diagnosis of breast cancers. Digital
image processing methods are able to enhance the image quality for better quantifying repeated
patterns especially for texture analysis. Quantitative characterization that can provide repeatable,
objective and reliable results are essential. Pathological analysis of breast tumors and assessment
of prognosis is based on accurate segmentation and quantitative evaluation of cell nuclei [1] and
alignment of collagen fiber [2] in histopathological images. For examples, Lu et al. [3] proposed
a quantitative measure of cellular texture characteristics and investigated for contributing to
automatic classification between different cell nuclei types in breast cancer. Jones et al. [4]
quantitatively characterized abundance and alignment of intra-tumoral collagen from polarimetric
images and used linear discriminant model to predict prognostic on invasive ductal carcinoma.
And Chen et al. [5] quantified collagen morphology in the second harmonic generation (SHG)
image via Tamura texture features in local orientation ternary pattern. The gray-level run-
length matrix-based features, co-occurrence matrix based-features and Tamura texture features
contributed most in this study.

Mueller matrices contain a wealth of microstructural information and optical properties when
detecting complex biological samples [6,7]. There are several methods for mining information
from Mueller matrices such as Mueller matrix polar decomposition (MMPD) [8], Mueller
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matrix transform (MMT) [9] and logarithmic Mueller matrix decomposition (LMMD) [10,11].
Polarization parameters with clear physical meanings were derived from Mueller matrices
have shown good diagnostic potential in characterizing the microstructure of various cancer
pathological tissues, including skin cancer [12], breast cancer [13–15], cervical cancer and
thyroid carcinoma [16]. In addition, in previous studies, based on machine learning methods,
we used the Mueller matrix parameters to construct polarimetry feature parameters that can
specifically quantify multiple microstructures in different breast tissues [13].

At high resolution, the correspondence between texture features and polarization parameters
can provide preliminary prediction of the polarimetry characterization results when obtaining
H&E-stained microscopic images without measuring the Mueller matrix images using special
polarization imaging microscopy. In the previous studies [13], the target microstructures could be
specifically and quantitatively identified by the polarimetry feature parameters (PFPs) composed
of polarimetry basis parameters (PBPs). Therefore, studying the correspondence between texture
features and polarization parameters can provide a theoretical basis for direct use of image
texture features to guide the primary screening of PBPs in later studies. In previous studies,
our group has demonstrated that the polarization imaging method is less resolution-dependent
in quantitatively characterizing wavelength-scale microstructures [13,17]. Therefore, once the
correspondence between image texture features and polarization parameters is established, the
polarization parameters can provide information with clear physical meaning that is missing
from H&E images supplementally. In the case of insufficient resolution resulting in the failure of
the texture features to identify the target microstructure.

In this paper, microscopic Mueller matrix images of H&E pathology sections of breast ductal
carcinoma were obtained using Mueller matrix microscopy. Images of polarization parameters
from MMPD and MMT [9,18,19] were then calculated. RGB images of H&E pathology
sections were analyzed using a 50*50 pixel-size sliding window for multiple texture features
to obtain texture feature images. The texture feature image is threshold-segmented, and the
selected pixel locations are mapped onto both the texture feature image and the polarization
parameter image to obtain an array of pairs corresponding to the pixel locations, and quantitative
correlation analysis is performed. In the following sections, we describe our method, show
results for characterizing different target microstructures using texture features and polarization
parameters, and demonstrate texture Feature-polarization parameter correlations via heat maps
[20]. Image texture features Tamura_Fcon and Tamura_Frgh correlated with depolarization
parameter ∆, polarization parameters of t1 and DL have great potential for the characterization
of cell nuclei in human breast ductal tissue. Image texture feature Tamura_Flin associated
with polarization parameters of δ and rL to quantitatively identify fiber tissues in breast ductal
carcinoma pathological slides. In the validation section, to identify target structures, we used
H&E pathology slice samples from 15 patients with breast ductal carcinoma to investigate the
ability of several one-to-many texture features-polarization parameters, which is pairwise and
highly correlated in multi-resolution situations. This experiment highlights the superiority of
polarization imaging methods in low resolution, large field of view situations.

2. Method and materials

2.1. Experimental setup and breast duct tissues sample

As shown in Fig. 1, we used a commercial transmission microscope (L2050, Liss Optical
Instrument Factory, Guangzhou, China) with subjoining polarization states generator (PSG)
module and polarization states analyzer (PSA) module [21]. During the measurement, forward
scattered light contained polarization information is captured by grayscale CCD, and RGB image
of pathological slide is collected by color CCD. Polarization intensity images are collected every
6° of rotation of R2, and every 30° of rotation of R1. In each measurement, R2 rotated 180°,
therefore 30 intensity images with different polarization states were captured. The 5:1 rotation
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ratio of R1 (5ω): R2 (ω) is the lowest ratio in which the expressions for the Fourier coefficients
can be inverted to give the Mueller matrix elements. 16 Mueller matrix elements of samples
can be calculated by the typical dual-rotating retarder method [22]. After collecting the Mueller
matrices of the air, the system is calibrated by the numerical calibration method [23], and the
maximum error is less than 0.01.

Fig. 1. Schematic of Mueller matrix microscope: LED (Cree, 3W, 633 nm, ∆λ= 20 nm),
Grayscale CCD (QImaging, 12-bit, 74-0107A, Canada), Color CCD (8-bit, JHSM300f,
China), Polarization State Analyzer (PSA): polarizer P1 (extinction ratio 500:1, Daheng
Optics, China) and a rotatable quarter-wave plate R1 (Daheng Optics, China), Polarization
State Generator (PSG): fixed polarizer P2 (extinction ratio 500:1, Daheng Optics, China) and
a rotatable quarter-wave plate R2 (Daheng Optics, China). An example of thirty intensity
images and the normalized Mueller matrices (plot with diagonal elements minus 1) of the
H&E pathological slide is presented.

In this study, the samples are H&E-stained pathological sections of human breast ductal
carcinoma tissues provided by Shenzhen Hospital of Traditional Chinese Medicine. Considering
about individual variability between patients, a total of 15 H&E pathological slices was selected
from patients diagnosed as breast ductal carcinoma. The 4-µm-thick pathological slices can be
considered as a single layer of structure whose integrally averaged polarization properties are all
contributed by the target microstructures. Region of Interest (ROI) in each pathological section
was selected from each case as sample, thus 15 samples were analyzed in this study. The ROI
contains a large number of cancer cells caused by canceration and abundant fiber structures caused
by inflammatory reaction, which have great meaning for diagnosis and prognosis. The target
microstructures-cell nuclei and fiber tissues-in the breast pathological images are all labelled
by experienced pathologists, which can be used as ground truth for the identification results
by texture and polarization parameters. This work was approved by the Ethics Committee of
Shenzhen Hospital of Traditional Chinese Medicine.

2.2. Polarimetry basis parameters (PBPs)

Previous studies on various pathological tissues have shown that the Mueller matrix imaging
method has good results in detecting the wavelength scale microstructures and improving the
diagnosis of cancer pathology samples [13,16,24].
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Among Mueller matrix decomposition methods, MMPD proposed by Lu and Chipman is
adaptable for analysis of transmission Mueller matrix of complex biological tissues [25]. MMT
from our previous work have been employed in various pathological samples, and demonstrated its
preliminary biomedical application prospects. Therefore, as shown in Table 1, eleven polarimetry
basis parameters, including MMPD and MMT parameters, with clear physics meanings derived
from Mueller matrices were used in this study to analyze the transmission Mueller matrix of
breast pathological samples. MMPD parameters include depolarization (∆), linear retardance
(δ), diattenuation (D), and orientation of fast axis (θ). In MMT, we also proposed various
rotation invariant polarization parameters calculated from Mueller matrix elements and related
to linear diattenuation (PL), linear dichroism (DL), linear retardance (rL), linear birefringence
(qL), anisotropy degree (t1), polarizance (b), normalized anisotropy (A) [6,12].

Table 1. Polarimetry basis parameters used in the studya

Mueller matrix
polar
decomposition Definition

Mueller matrix
polar
decomposition Definition

∆ ∆ = 1 −
|tr(M∆−1)|

3 D D =
√︂
(m12)2 + (m13)2 + (m14)2

θ θ = 0.5tan−1
(︂

r2
r1

)︂
δ δ = cos−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

(MR(2, 2) +MR(3, 3))2

+ (MR(3, 2) +MR(2, 3))2

⎤⎥⎥⎥⎥⎦
1
2

- 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Mueller matrix
transformation Definition

Mueller matrix
transformation Definition

PL PL =
√︂
(m21)2 + (m31)2 t1 t1 =

√
(m22−m33)2+(m23+m32)2

2

DL DL =
√︂
(m12)2 + (m13)2

qL qL =
√︂
(m42)2 + (m43)2 b b = m22+m33

2

rL rL =
√︂
(m24)2 + (m34)2 A A = 2b×t1

b2+t21

aIn the Table above, m11-m44 denoted as 16 elements of the Mueller matrix, MR is the 4*4 retardance sub-matrix and
M∆ is the 3*3 depolarization sub-matrix resulting from the Lu-Chipman polar decomposition, tr represents the trace of
the matrix, r1 and r2 are the components of retardance.

2.3. Image analysis methods

Texture features quantitatively characterize the changes in spatial distribution between adjacent
pixels. Multiple texture features were extracted from RGB image of pathological slides of breast
ductal carcinoma. The extracted features differentiate micro-structures for breast duct tissue
which play a significant role in histopathological digitalization and computer-aided diagnosis.
Here, we constructed a texture feature set including Tamura features, gray level co-occurrence
matrix (GLCM) features, local binary pattern (LBP) and gray level run length matrix (GLRLM)
features, which have been widely used in digital pathology [26,27].

2.3.1. Data preprocessing

This research is based on mapping the selected pixels to the polarization parameter image after
thresholding the texture feature image to realize the correlation analysis between the texture
features and the polarization parameters at the same pixel position. Therefore, the polarization
parameter image and texture feature image before threshold and segmentation are required to be
registered pixel by pixel. In the study, we used an affine-transformation-based image registration
method [28]. After optimizing the iteration step size, initial conditions and the maximum number
of iterations, the pixel-level registration of the two images was achieved.
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2.3.2. Image texture analyze methods

Tamura Feature. Tamura proposed six texture features based on human vision and intuition
[29]. The six texture features are coarseness, contrast, roughness, directionality, line-likeness and
regularity, of which the definitions are shown in Table 2.

Table 2. Texture parameters used in the study a

Tamura Features Definition GLRLM features Definition

Fcrs Fcrs =
1

m×n
m∑︁

i=1

n∑︁
j=1

Sbest(i, j) SRE SRE =
∑︁m

i=1
∑︁n

j=1 [Pθ
d (i,j)/j2]∑︁m

i=1
∑︁n

j=1 Pθ
d (i,j)

Fcon Fcon =
σ

(α4)
n LRE LRE =

∑︁m
i=1

∑︁n
j=1 j2Pθ

d (i,j)∑︁m
i=1

∑︁n
j=1 Pθ

d (i,j)

Fdir Fdir = 1 − r
•n
p

np∑︁
p

∑︁
φ∈ωp

(φ − φp)
2 •

H
D
(φ) GLN GLN =

∑︁m
i=1

[︂∑︁n
j=1 Pθ

d (i,j)
]︂2∑︁m

i=1
∑︁n

j=1 Pθ
d (i,j)

Flin Flin =

∑︁m
i=1

∑︁n
j=1 PD,d (i,j) cos[(i−j)(2π/n)]∑︁

i RLN RLN =
∑︁n

j=1

[︂∑︁m
i=1 Pθ

d (i,j)
]︂2∑︁m

i=1
∑︁n

j=1 Pθ
d (i,j)

Freg Freg = 1 − r(σcrs + σcon + σdir + σlin) RP RP =
m∑︁

i=1

n∑︁
j=1

Pθ
d (i,j)
m×n

Frgh Frgh = Fcrs + Fcon LGLRE LGLRE =
∑︁m

i=1
∑︁n

j=1 [Pθ
d (i,j)/i2]∑︁m

i=1
∑︁n

j=1 Pθ
d (i,j)

GLCM features Definition HGLRE HGLRE =
∑︁m

i=1
∑︁n

j=1 i2Pθ
d (i,j)∑︁m

i=1
∑︁n

j=1 Pθ
d (i,j)

Con Contrast(d, θ) =
m∑︁

i=0

n∑︁
j=0

|i − j |2Pθ
d (i, j) SRLGLE SRLGLE =

∑︁m
i=1

∑︁n
j=1 [Pθ

d (i,j)/i2j2]∑︁m
i=1

∑︁n
j=1 Pθ

d (i,j)

Egy Energy(d, θ) =
m∑︁

i=0

n∑︁
j=0

[Pθ
d (i, j)]

2 SRHGLE SRHGLE =
∑︁m

i=1
∑︁n

j=1 [Pθ
d (i,j)i2/j2]∑︁m

i=1
∑︁n

j=1 Pθ
d (i,j)

Cor Correlation(d, θ) =
m∑︁

i=0

n∑︁
j=0

ijPθ
d (i,j)−µxµy
σxσy

LRLGLE LRLGLE =
∑︁m

i=1
∑︁n

j=1 [Pθ
d (i,j)j2/i2]∑︁m

i=1
∑︁n

j=1 Pθ
d (i,j)

Hmg Homogeneity(d, θ) =
m∑︁

i=0

n∑︁
j=0

1
1+(i−j)2

Pθ
d (i, j) LRHGLE LRHGLE =

∑︁m
i=1

∑︁n
j=1 Pθ

d (i,j)i2j2∑︁m
i=1

∑︁n
j=1 Pθ

d (i,j)

aHere, Sbest means the neighborhood size which generates the highest similarity of intensity, δ represents standard
deviation and µ is mean value, α4 is the kurtosis of the intensity histogram, HD denoted as direction histogram, based on
HD, np is number of peaks, φp is the position of the p-th peak, ωp is range of the p-th peak and φ is direction angle.

Gray-level co-occurrence matrix (GLCM). GLCM characterizes the texture of an image by
calculating the spatial relationship of pixel values, and then four statistical features-contrast,
energy, correlation and homogeneity-can be derived from this matrix [30].

Local binary patterns (LBP). Figure 2 shows the four LBP operators used in this study. The
original LBP operator is defined in the neighborhood of pixels 3*3, with the center pixel of the
neighborhood as the threshold [31]. Ojala et al. [32] proposed a uniform pattern to reduce the
dimensionality of LBP operators. The Uniform LBP solves the problem of too many binary
patterns and improves statistics. The Circular LBP [33] adapts to texture features of different
scales by improving LBP operator from square neighborhood to circular neighborhood. Rotation
LBP is based on the circular LBP. Rotate circular LBP form different angles, then take the center
pixel value as the smallest circular LBP feature value.

Gray-level run length matrix (GLRLM). The run-length matrix Mr (i, j) is defined as the
number of runs of variables having gray level i and run length j at 0°,45°,90° and 135° four
directions of the image. As shown in Table 2, eleven GLRLM texture features of run-length
statistics derived by Galloway [34], Chu et al. [35], Dasarathy and Holder [36] were analyzed in
this study.
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Fig. 2. Summary of LBP Operators. (a) Illustration of original LBP operator. Example
of original LBP binary codes obtained by local thresholding and transformed into uniform
LBP code. (b) A circular LBP operator with a sampling number P of 8 and a radius of 1 is
used in this study. (c) Examples of rotation LBP operators.

2.4. Pearson correlation coefficient

Pearson correlation coefficient (PCC) is a measurement of linear correlation between two random
real-valued variables. It is the first and the most widely used measures of correlation. Pearson
correlation coefficient is defined as the product of the covariance of two variables X and Y
divided by their standard deviation which means the calculation process of Pearson correlation
coefficient includes normalization, therefore, there is no requirement for the range of values
between different variables, and the final obtained correlation measures the trend, while the
difference in scale of different variables is removed in the calculation process. Its calculation
formula [Eq. (1)] was proposed by Rodgers [37].

rxy =

∑︁
(xi − x)

∑︁
(yi − y)√︂∑︁

(xi − x)2
√︂∑︁

(yi − y)2
(1)

The coefficient rxy ranges from -1 to 1. When rxy is greater than 0, x and y are positively
correlated, and when rxy is less than 0, x and y are negatively correlated. The greater the absolute
value of the coefficient rxy, the stronger the correlation. Normally, when the absolute value of
rxy is between 0.8 and 1.0, the correlation is extremely strong, between 0.6 and 0.8 represents
a strong correlation, between 0.4 and 0.6 means a moderate correlation, and between 0.2 and
0.4, there is a weak correlation. Between 0.0 and 0.2, x and y are considered to be very weakly
correlated or uncorrelated.

In this study, we used Pearson correlation coefficient to quantify the degree of correlation
between the two sets of image texture features and polarization parameters.
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2.5. Schematic of the study

Figure 3 summarizes the schematic of the study. In the preprocessing part, thirty intensity images
and H&E images were first registered, and the regions of interest (900*1000 pixels) with the
same size, same resolution and pixel-level registration were cut out. After obtaining the Mueller
matrices using the 30 intensity images, polarization parameter images can be derived by the
functions of Mueller matrix elements [8]. And then we calculated the texture features within
50*50 pixels window on the H&E image and slides the window on the entire image to obtain
the texture parameters images. Perform threshold calculation on the texture parameter images
with the maximum inter-class variance (Otsu algorithm) to segment the mask for obtaining
targeted structures [38], then map the pixel position selected in the mask to both polarization
parameter image and texture feature image, which ensures that the selected pixel locations contain
microstructural information. A pair of Texture Feature-Polarization Parameter vectors is obtained
in which pixel positions is corresponding, and the Pearson correlation coefficient between these
two vectors is calculated to form a heat map. By analyzing the heat map, we could find the
relationship between polarization parameters and texture feature parameters, which paves the
way for the microstructural information of both modes to complement each other.

Fig. 3. Schematic of the study: (a) Preprocessing part that image registration between
polarization image and H&E image. (b) Example of polarization parameters that derived from
Mueller Matrices. (c) Example of texture feature image. (d) Mask formed by thresholding
and segmentation from texture feature image. (e) Pearson correlation coefficient heatmap.

3. Results and discussion

We summarize the one-to-many associations of several pairwise texture feature-polarization
parameters for different target microstructures in this section. For recognizing the cell nuclei
structure, the Pearson correlation coefficient 0.6 was used as a threshold to filter out the highly
correlation, image texture features Tamura_Fcon and Tamura_Frgh associated with polarization
parameters of ∆, t1 and DL. For identifying the fiber structure, the Pearson correlation coefficient
0.4 was used as a threshold to filter out the highly correlated image texture features Tamura_Flin
connected with polarization parameters of δ and rL. The performance of both texture features
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and polarization parameters were tested on in total 15 breast ductal carcinoma tissue samples on
multi-resolution cases.

3.1. Texture features of H&E images

In this study, the twenty-five texture feature images mentioned in section 2.3.2 were calculated.
we selected 8 texture feature parameters among all the twenty-five texture feature parameters
based on the parameter imaging contrast of cell nuclei or fiber structure in breast pathological
tissues, i.e. the 8 texture features have potential for quantitative characterization of the target
microstructures, as shown in Fig. 4.

Fig. 4. Sets of texture feature images derived from H&E images of breast pathological
tissue using image processing methods. Texture feature parameters-GLRLM_LGLRE,
GLRLM_SRLGRE, Tamura_Fcon and Tamura_Frgh-are corresponding to the label of (a)
cell nuclei, and texture feature parameters-Tamura_Flin, GLRLM_GLN, GLRLM_SRHGRE,
and GLRLM_HGLRE -are corresponding to the label of (b) fiber tissue. The labels in this
study come from experienced pathologists.

The image results for the texture features shown in Fig. 4 are calculated within a 50*50 pixel
size window and assigned to the center point within the window, which is a process similar to
convolution, and then sliding the window through the entire H&E image to obtain images of the
texture features. Therefore, the value of each pixel in the texture feature image corresponds to the
texture information in a small neighborhood around it in the original H&E image. The pixel
values in the polarization parameter image represent the polarization feature in the corresponding
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location of sample. Although the sliding window computation makes each pixel value in the
texture feature image quantitatively characterize the texture information in that region, this
approach pixelates information that would be extracted only within the region. Thus, the analysis
of two datasets with one-to-one pixel-level correspondence becomes meaningful.

As shown in Fig. 4(a), the highlighted areas of GLRLM_LGLRE, GLRLM_SRLGRE, Tamura_Fcon
and Tamura_Frgh all match the area marked by the label of the cell nuclei in breast ductal
carcinoma tissue. The Tamura_Fcon feature reflects the sharpness of the edge and the period of
repeating patterns, which has corresponding relationship with the concentrated area of cell nuclei
under H&E-staining conditions. The Tamura_Frgh is a texture feature related to human visual
tactile impression, which characterizes the degree of roughness or smoothness of the image. The
cell nuclei area is visually uneven in the H&E-stained images, therefore, it is reasonable that the
value of Tamura_Frgh is high in the cell nuclei regions of breast pathological tissues. The two
features of GLRLM_LGLRE and GLRLM_SRLGRE are the statistical characteristics of low gray
level, short run and low gray level in the gray run-length matrix respectively. We can observe
from Fig. 4(a) that the high pixel values of the two statistical features distribute in the nuclei area,
which has great potential for quantitative characterization of cell nuclei in breast pathological
tissues.

As shown in Fig. 4(b), the highlighted areas of Tamura_Flin, GLRLM_GLN, GLRLM_SRHGRE,
and GLRLM_HGLRE are corresponding with the area marked by the fiber label in the H&E
stained images. The Tamura_Flin feature represents the degree of line-likeness of the shape of
repeating patterns. The features of GLRLM_SRHGRE and GLRLM_HGLRE are the statistical
characteristics of high gray level, short run and low gray level in the gray run-length matrix
respectively, and GLRLM_GLN means non-uniformity of the image. Nuclei appear as dark
dots in H&E-stained pathological sections. Thus, grayscale features of cell nuclei area can
be summarized as low grayscale levels and short excursions, while texture features have high
repeatability and clear boundaries. Different from the nuclei area, conversely, the gray-scale
characteristic of the fibrous structure is high gray level, strong continuity and linear distribution.
The characterization results indicate that the four texture features enable the identification of
fiber structures in breast pathological slides.

3.2. Polarization parameters of tissues

The eleven polarization parameters PBPs mentioned in section 2.2 were calculated. PBPs images
which have obvious imaging contrast on cell nuclei or fiber regions were selected, which may
serve as powerful tools for quantitative characterization of target microstructures in breast ductal
carcinoma tissues.

As shown in Fig. 5(a), The PBPs of DL, t1, ∆, D and b have different characterization ability
for the cell nuclei in breast histological samples. Parameters D and ∆ are obtained by the MMPD
method, D represents dichroism, and ∆ represents the depolarization physical characteristics
of sample. The parameter b calculated by the MMT method is related to the diagonal Mueller
matrix elements m22 and m33, which is closely related to the depolarization. t1 represents the
anisotropy, and A is calculated by t1 and b, which represents normalized anisotropy. The black
solid line drawn by pathologist in the H&E images of breast ductal carcinoma tissue labels the
cell nuclei, which can be used as the ground truth for parameters characterization. By analyzing
the comparison between the 2D images of PBPs and ground truth, we can conclude that the
breast cell nuclei have anisotropy produced by dichroism, and depolarization related parameters
images have good contrast between cell nuclei and the rest pathological structures. Therefore,
the five selected PBPs were analyzed for the correlation with the image texture features which
can be used for recognition of the breast cell nuclei.

Figure 5(b) shows that the PBPs of PL, rL, qL, δ and θ have different ability to distinguish fiber
tissue (marked by the red solid line) in breast pathological slides quantitatively. Parameters δ and
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Fig. 5. Sets of polarization parameters images of breast pathological tissue. PBPs-DL, t1,
∆, D and b- are correspond with the label of (a) cell nuclei (labelled by the black solid line
in H&E stained image), and PBPs-PL, rL, qL, δ and θ-are correspond with the label of (b)
fiber tissue (marked by the red solid line in H&E stained image).

θ from MMPD represent linear retardation and angle of fast axis respectively. PL, rL and qL are
the modules of the left, right and lower edges of the Mueller matrix, which characterize column
scattering, linear retardation and birefringence of the sample [14,19]. Therefore, the results of
PBPs images indicate that the fibrous structure in breast pathological tissue have anisotropy
produced by birefringence, resulting in the birefringence related parameters were selected to
find the relationship with the texture features for the characterization of fiber structures in breast
pathological tissue.

3.3. Building quantitative correspondence between polarization parameters and texture
features

Figure 6 shows the Pearson coefficient (rxy) correlation heatmap of pairwise association between
the texture features and polarization parameters which were proved in above section that have
ability to distinguish nuclei and fiber tissue. The horizontal axis is texture features, and the
vertical axis is polarization parameters. Dark color means two sets of data is highly correlated.
Viewed longitudinally from the perspective of polarimetry, PBPs with similar physical meanings
are arranged in adjacent rows. We put the depolarization related parameters ∆ and b, the overall
anisotropy parameters A and t1, and the dichroism related parameters D and DL in the top half



Research Article Vol. 12, No. 3 / 1 March 2021 / Biomedical Optics Express 1603

of the heatmap. These PBPs are sensitive to cell nuclei based on above analysis. Besides,
the retardance related parameters (rL, qL, δ and θ) which have closely relationship with fiber
structures are arranged in the bottom half of the heatmap. PL can be considered as a dividing
line for PBPs characterization between the nuclei and the fiber tissue. We can observe from
heatmap that there are obvious positive and negative changes as well as different absolute values
of coefficients above and below parameter PL, indicating that PBPs sets characterizing the
different target microstructures have significantly different correlation with the texture feature
parameters. The texture parameters (GLRLM_LGLRE, GLRLM_SRLGRE, Tamura_Fcon and
Tamura_Frgh) which can be used for cell nuclei recognition based on above analysis have large
correlation values with PBPs above PL. The texture parameters Tamura_Flin, GLRLM_GLN,
GLRLM_SRHGRE, and GLRLM_HGLRE make great contributions for the characterization of
fiber tissue in breast pathological slides, which have positive correlation coefficients with PBPs
below parameter PL, whereas are negative correlated with that above PL. Of note, it can be found
that polarization parameters with similar physical meanings will have relatively large differences
when calculating correlation coefficients for the same texture features. This may be due to the
fact that the information contained in the parameters decoded by the different methods are not
exactly consistent. It is shown in Fig. 6 that rxy between orientation of fast axis θ and sets of
image texture features are very small, however, we can observe from Fig. 5 that the 2D image
parameter θ has obvious imaging contrast on the fiber structures. Polarization parameter θ is
related explicitly to the orientation angle of the sample. It is the statistical distribution features of
θ, such as standard deviation, rather than the numerical value that has potential to quantitatively
characterize the fiber structures [39]. Therefore, when the Pearson correlation coefficients are
calculated using the value of angle parameter, θ does not correlate with the individual texture
features.

Fig. 6. Correlation heatmap. The correlation heat map shows the Pearson coefficient
between the polarization parameters (y-axis) and the image texture features (x-axis). Red
means positive correlation, blue means negative correlation, and white means uncorrelation
or un-statistically significant correlation.

We can observe from Fig. 6 that the rxy of pairwise association between the texture features and
polarization parameters used for characterization of cell nuclei structures was higher than that of
the fiber regions. Thus, for screening the image texture feature-polarization parameter with high
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correlation, we took the baseline of the rxy for different target structures into consideration. The
baseline is calculated under an extreme condition in which the resolutions of H&E-stained images
and the polarization parameter images are reduced significantly using a mean filter sliding window
with 100*100 size, then texture feature images of the blurred H&E images were calculated within
a 50*50 sliding window. The correlation of the image texture feature-polarization parameter
under this extreme condition tends to be stable and minimal, with the baseline of rxy for cell
nuclei is about 0.2 and the baseline of rxy for fiber structure is near to 0. In Section 2.4, we have
introduced the smallest rxy of moderate correlation is 0.4. Considering the baseline of rxy for
different target structures under an extreme condition and the smallest rxy of moderate correlation,
the threshold is set to the sum of the two. Therefore, for nuclei structures, rxy of 0.6 was used as a
threshold to screen out highly correlated image texture features Tamura_Fcon and Tamura_Frgh
with depolarization parameter ∆, polarization parameters t1 and DL, and for fiber structures, rxy
of 0.4 was used as a threshold to screen out highly correlated image texture features Tamura_Flin
with polarization parameters δ and rL.

Table 3 summarizes all the eight texture features which were highly and significantly associated
with polarization parameters with high Pearson coefficient. Table 4 summarizes the texture
features that are significantly related to the polarization parameters (with rxy of cell nuclei ≥ 0.6, rxy
of fiber ≥ 0.4) in the heat map from the perspective of the polarization parameters. This summary
provides potential physical characteristics for the image parameters when characterizing the same
microstructures in pathological samples, and selection methods for polarization parameters by
image feature parameters.

Table 3. Summary of representative texture features

Tissue Texture features rxy Feature explanation

Cell nuclei

Tamura_Fcon 0.71 Quantitively describe sharpness of edges, period of cell repeating patterns.

Tamura_Frgh 0.7 Quantitively describe total energy of changes in specific area.

GLRLM_LGRLE 0.45 Distribution of the low grey-level runs.

GLRLM_SRLGLE 0.38 Distribution of the short homogeneous runs with low grey-levels.

Fiber

Tamura_Flin 0.48 Quantitively describe the shape of texture element.

GLRLM_GLN 0.39 Describe non-uniformity of the grey-levels.

GLRLM_HGRLE 0.38 Distribution of the high grey-level runs.

GLRLM_SRHGLE 0.36 Distribution of the short homogeneous runs with high grey-levels.

Table 4. Summary of representative polarization parameters

Tissue Polarization
Parameters

Numbers and details related to texture
features

Physics
explanation of
parameters

Cell nuclei
∆ 4 (Tamura_Fcon, Tamura_Frgh,

GLCM_Hmg, GLCM_Con)
Depolarization.

DL 2 (Tamura_Fcon, Tamura_Frgh) Linear dichroism.

t1 2 (Tamura_Fcon, Tamura_Frgh) Anisotropy degree.

Fiber
δ 1 (Tamura_Flin) Linear retardation.

rL 1 (Tamura_Flin) Linear retardation.

These highly associated relations may lead to potential conjectures about image texture features
with specific microstructures or even physical quantity. Texture features Tamura_Fcon and
Tamura_Frgh can quantitatively describe cell nuclei in H&E pathological images of breast tissues,
and PBPs t1, DL and depolarization ∆ enable the quantitative characterization of the same target
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microstructure. It may imply that on H&E stained cases, texture features Tamura_Fcon and
Tamura_Frgh have close relationship with physical meanings of depolarization, anisotropy and
dichroism. The aligned fiber tissue is highly line-like that can be characterized by texture feature
Tamura_Flin. Meanwhile, polarization parameters δ and rL are sensitive to fibrous structure.
Thus, for H&E-stained cases, texture feature Tamura_Flin may have physical feature of linear
retardation. On the other hand, after finding the relationship between PBPs and texture features,
we could predict sample’s specific polarization features without Mueller matrix measurement
only by calculating the corresponding image texture parameters.

3.4. Validation

3.4.1. Validation of the stability of texture features

By applying different sizes of average filter before input the H&E image, we verified the stability
of texture features on multi-resolution cases. During the validation process, 15 samples were
tested. Specifically, we compared the results obtained from thresholding texture feature images at
different resolution cases with the gold standard, and the accuracy was calculated as Eq. (2). The
ability of this texture feature to recognize the target structure is thus quantified. The accuracy
of image texture features to identify target structures significantly decreases with decreasing
resolution. As shown in Fig. 7, for the characterization of cell nuclei, the accuracy of texture
feature Tamura_Fcon decreased from 0.87 (without average filtering) to 0.73 (with 20*20 average
filtering) gradually, and that of texture feature Tamura_Frgh decreased from 0.89 to 0.76. For
the recognition of fibrous tissues, texture feature Tamura_Flin decreased from 0.83 to 0.69 as
the image resolution decreases. These results suggest that image texture features have good and
stable identification of target structures at high resolution, however, this identification is heavily
resolution dependent.

3.4.2. Validation of the stability of polarization parameters

Likewise, by applying different sizes of average filter directly on polarization parameter images, we
verified the stability of polarization parameters on multi-resolution cases. For the characterization
of cell nuclei tissue, the accuracy of the depolarization parameter ∆was 0.87 in the no-means-
filtered case, while it remained at 0.85 in the 20*20-means-filtered case, decreasing only by 0.02.
Meanwhile, the accuracy of the polarization parameter DL was kept around 0.87 with only slight
fluctuations, and that of the polarization parameter t1 slightly decreased from 0.86 to 0.82. For
the identification of fibrous tissues, the accuracy of the polarization parameter rL was maintained
between 0.85 and 0.86, and the accuracy of the polarization parameter δ decreased by 0.02 after
0.83 as the resolution decreasing. These results show that the polarization parameters have good
and stable identification of the target structure at multi-resolution cases.

Accuracy =
TP + TN

TP + FP + TN + FN
% (2)
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Fig. 7. Accuracy on the characterization of the target microstructures by Texture features-
Polarization parameters at multi-resolution cases. (a1) Texture features Tamura_Fcon and
Tamura_Frgh for the identification of cell nuclei. (a2) Texture feature Tamura_Flin for the
recognition of fiber tissue. (b1) Polarization parameters t1, DL and depolarization ∆ for the
characterization of cell nuclei. (b2) Polarization parameters δ and rL for the characterization
of fiber tissue.

4. Conclusion

In this study, we proposed an approach that can successfully validate the hypothesis associations
between image texture features and polarization parameters, which reflect the tissue micro-
structure classification on breast ductal carcinoma. After extensively calculating Pearson
correlation coefficients for 25 image texture features and 11 polarization parameters, we screened
stable and highly correlated texture feature-polarization parameter correspondences for different
target microstructures.

Polarization parameters t1, DL and depolarization parameter ∆ can be used to quantitively char-
acterize cell nuclei tissue, which related to image texture features Tamura_Fcon and Tamura_Frgh.
Polarization parameters δ and rL association with image texture feature Tamura_Flin, which
have ability to recognize fibrous tissue in breast ductal carcinoma samples. We used 15 breast
ductal carcinoma samples for validation at multiple resolutions and found that both texture
features and polarization parameters performed satisfactorily in identifying target structures at
high resolution, but at low resolution, the accuracy of texture features decreased significantly with
decreasing resolution, while polarization parameters showed stable accuracy. This study realizes
the potential for image texture features to provide complementary information to polarization
parameters at high resolution, and for polarization imaging methods to provide specific physical
meanings to light intensity images on histopathological samples.
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